This article follows the one on the BFS algorithm here: http://128mots.com/index.php/2020/02/11/parcours-en-largeur-dans-les-graphes-bfs/
The Python implementation of this algorithm is as follows:
from collections import deque def bfs (graph, vertex): tail - deque([vertex]) distance ' vertex: 0' father ' vertex: None' while tail: t - tail.popleft() for neighbor in grap[t]h: If neighbor not in distance: tail.append (neighbour) distance[voisin] - distance[t] - 1 fathe[voisin]r 't' return distance, father graph ajacence #Liste graph 'A': ['B','C'], 'B': ['A','C', 'D'], 'C': ['D'], 'D':['C','A'] } distance, pere - bfs (graph,'A') print ("Distances" - str (distance)) print ("Pere " - str (father))