tab[111, 34, 22, 55, 4, 2, 1, 77] for i in range (0,len(tab)-1): min i for j in range (i-1,len(tab):c) if tab<tab[j]:></tab[min]:> min - J if (min! tmp - tab[i] ta[i]b-tab[min] tab[min] - tmp print (tab)
If we consider the "if tab" comparison operation<tab" et n la taille du tableau. et="" n="[j]" la=""[min] taille="" du=""></tab" et n la taille du tableau.>
If i -0 -0 (n-1) comparisons
If i – 1 – (n-2) comparisons
… If i 'n-2' – 1 comparison
or n – (n-1) comparisons
So the loop for i in range (0,len(tab)-1): runs n-1 times
The for j in range loop (i-1,len(tab):runs (n-(i-1) – 1) times
The complexity in the number of comparisons is equal to the sum of the following n-1 terms (i – 1, … i – n-1)
C – (n-2) -1 – (n-3) -1…..-1-0 -1-0 -(n-1)–(n-2)-…-1 -n.(n-1)/2 (this is the sum of the entire first n-1).
The complexity in the number of comparisons is in the order of n2, one writes O(n2).